Bound on Lyapunov exponent in $$c=1$$ matrix model

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite size Lyapunov exponent: review on applications

In dynamical systems, the growth of infinitesimal perturbations is well characterized by the Lyapunov exponents. In many situations of interest, however, important phenomena involve finite amplitude perturbations, which are ruled by nonlinear dynamics out of tangent space, and thus cannot be captured by the standard Lyapunov exponents. We review the application of the finite size Lyapunov expon...

متن کامل

Maximal Lyapunov exponent at crises.

We study the variation of Lyapunov exponents of simple dynamical systems near attractor-widening and attractor-merging crises. The largest Lyapunov exponent has universal behaviour, showing abrupt variation as a function of the control parameter as the system passes through the crisis point, either in the value itself, in the case of the attractor-widening crisis, or in the slope, for attractor...

متن کامل

Discontinuity of the Lyapunov Exponent

We study discontinuity of the Lyapunov exponent. We construct a limit-periodic Schrödinger operator, of which the Lyapunov exponent has a positive measure set of discontinuities. We also show that the limit-periodic potentials, whose Lyapunov exponent is discontinuous, are dense in the space of limit-periodic potentials.

متن کامل

Lyapunov exponent of ion motion in microplasmas.

Dynamical chaos is studied in the Hamiltonian motion of ions confined in a Penning trap and forming so-called microplasmas. The dynamical chaos of the ion motion is characterized by the maximum Lyapunov exponent. Results are reported on the dependence of this exponent on the energy of the system, on the number of ions, as well as on the geometry of the trap. Different dynamical regimes are char...

متن کامل

Scaling laws for the largest Lyapunov exponent in long-range systems: A random matrix approach.

We investigate the laws that rule the behavior of the largest Lyapunov exponent (LLE) in many particle systems with long-range interactions. We consider as a representative system the so-called Hamiltonian alpha-XY model where the adjustable parameter alpha controls the range of the interactions of N ferromagnetic spins in a lattice of dimension d. In previous work the dependence of the LLE wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The European Physical Journal C

سال: 2020

ISSN: 1434-6044,1434-6052

DOI: 10.1140/epjc/s10052-020-7879-9